
Report for Advanced Data Structure and Algorithm Analysis

Texture Packing

Tinghao Xie1

Haoran Lin
Zihao Zhao

Zhejiang University

May 15th, 2020

1In this project, Tinghao Xie’s work includes: proposing the idea of combining genetic algorithm with traditional
ones; implementation of reverse-fit algorithm and part of genetic algorithm; implementation of random rectangle division
program with a given height as input for test; part of the analysis job; documenting this paper.

1 Introduction
Cutting and packing problems are encountered in many industries, with different industries incorpo-
rating different constraints and objectives. A basic form of such problems is well known as Bin Packing,
where a set of 1D items with different volumes are to be pack into a finite number of containers.

There are so many variations of Bin Packing problem, and our work is concerned with a 2D rect-
angular packing problem. The problem, also known as Texture Packing, originates from computer
graphics, where packing different rectangle textures into a larger rectangle image is vital for render-
ing. In this problem, the task is to pack a collection of 2D items into a rectangular container while
minimizing the used height of container. The packing process has to ensure that there is no overlap
between the items. The specific problem we discuss has the following characteristics:

• All items are of rectangular shape

• All items can be rotated by 90◦

• The container has a given width

A direct look of the Texture Packing problem is given below.

Figure 1: An example for Texture Packing problem

We are going to discuss several algorithms solving the problem in this report. In Chapter 2, these
algorithms are specified. Besides traditional Best-fit algorithm, some variations and improvements
of it are introduced. Particularly, Genetic algorithm is implemented to the problem as an innovative
assist. After that, Sleator’s algorithm and Reverse-fit algorithm are also briefly described. In
Chapter 3, both correctness test and performance test are performed. Comparison of those algorithms
and some possible factors contributing to approximation ratio are covered in Chapter 4, where further
insight of genetic algorithm is also in scope.

2 Algorithm Specification
Since the rotation requirement will make the program quite complicated(it is hard to determine
whether an item should be rotated), we discuss our algorithms for strip packing problem which is
not allowed to rotate items in section 2.1, 2.2. Then we introduce genetic algorithm in section 2.3 to
solve the rotation problem. Also, in section 2.4, we describe some known strip packing algorithms,
which will be compared to our methods in the following chapters.

2

2.1 Best-fit Decreasing-Height
Best-fit Decreasing-Height is a level-oriented algorithm. The base idea of the algorithm is that we can
divide the strip into different levels and place the items at the place which has the least remaining
width. To be more specific, firstly, the algorithm sorts the items by order of nonincreasing height.
Then, starting at the bottom left position, the algorithm places the items next to each other in the
strip until the next item will overlap the right border of the strip. At this point, the algorithm scans
the levels from bottom to top and places the item in the levels which has the least remaining width.
If there is no existing levels satisfying the requirement, that is, the remaining widths of the existing
levels are too small to place the current item, a new level is defined at the top of the tallest item in
the current level and places the items next to each other in this new level.

For example, consider a strip with maximal width 18. And there are 7 items(the detailed infor-
mation is in Table1). The solution generated by Best-fit Decreasing-Height is in Figure 2.

i 1 2 3 4 5 6 7
w(i) 6 5 4 7 3 4 6
h(i) 8 7 6 5 4 3 2

Table 1: Items Information

Figure 2: The solution of packing items in Table 1 into the strip(width is 18)

Algorithm 1 Best-fit Decreasing-Height
1: function BFDH(Items,MaxWidth)
2: TotalHeight← 0
3: Levels← empty
4: sort Items by order of nonincreasing height
5: for item in Items do
6: level ← the level in the Levels with least remaining width enough for item
7: if there exists such level then
8: update the level: level.remainWidth← level.remainWidth− items.width
9: else

10: new a level newLevel, and place the item in this level
11: newLevel.remainWidth←MaxWidth− items.width
12: add newLevel into Levels
13: TotalHeight← TotalHeight+ item.height
14: end if
15: end for
16: return TotalHeight
17: end function

3

• Time Complexity: The sort procedure cost O(N logN). And note that we can use BST(e.g.
red-black tree) to find the least remaining width enough for items in the Line 6 in Algorithm 1.
That is, the worst cost of Line 6 is O(logN). Therefore, the worst and average time complexity
for Algorithm 1 is O(N logN).

• Approximation Ratio: In Algorithm 1, we sort the items by order of nonincreasing height.
That is, the height will not place restrictions on the following step. Therefore, the algorithm
works like best-fit for one-dimension bin packing. And we have learned that the approximation
rate of best-fit for one-dimension bin packing is 1.7. Similarly, Coffman[1] proved that

BFDH ≤ 1.7OPT + hmax, (1)

where OPT is the optimal height and hmax is maximal height in these items. Since the proof
is quite complex, please refer to the reference document we list if you are interested in the
detailed proof. Also, note that hmax ≤ OPT , the worst approximation ratio is 2.7.(Note that
the approximation rate holds true only when the items are not allowed to rotate.)

2.2 Best-fit Decreasing-Height:Improved Version
Note that Best-fit Decreasing-Height only use the space next to rightmost items in each level. To
utilize the space above the existing items in each level, we propose the improved version of Best-fit
Decreasing-Height.

In general, this algorithm is also level-oriented algorithm. What makes it different from traditional
Best-fit Decreasing-Height is the treatment of space in each level. Besides using the space next to
rightmost items in each level, we also utilize the space between the top of existing items and the top
of the level. To be more detail, we define a rectangular area, named box, associated with a item by
the top line of the item, the top line of the level, the left line of the item and the right line of the item.
Also, we consider the space next to rightmost items in each level as box too. For example, there are 7
boxes in Figure 3. And Figure4 illustrates the insertion of a new item (the red one) into a box(Box0),
resulting in generation of Box1 and Box2.

Figure 3: The boxes in the strip

(a) Before insertion (b) After insertion

Figure 4: Insertion of a new item (the red one)

4

For the detailed algorithm, this algorithm works like Best-fit Decreasing-Height. But when search-
ing the ”best” position for placing an item, this algorithm searches all the existing boxes and pick the
fitted box whose width is least. This strategy usually results in better space utilization.

Algorithm 2 Best-fit Decreasing-Height : Improved Version
1: function BFDH-v2(Items,MaxWidth)
2: TotalHeight← 0
3: Boxes← empty
4: sort Items by order of nonincreasing height
5: for item in Items do
6: box ← the box in the Boxes whose space is enough for item and has least width
7: if there exists such box then
8: place the item in this box
9: new two boxes : box1 and box2

10: box1.width← box.width− item.width
11: box1.height← box.height
12: box2.width← item.width
13: box2.height← box.height− item.height
14: erase box from Boxes and insert box1 and box2 into Boxes
15: else
16: new a box newBox, and place the item in this box
17: newBox.width←MaxWidth− item.width
18: newBox.height← item.height
19: add newBox into Boxes
20: TotalHeight← TotalHeight+ item.height
21: end if
22: end for
23: return TotalHeight
24: end function

• Time Complexity: The sort procedure cost O(N logN). Also, there are at most N + 1 boxes
in Algorithm 2 and we need to traverse all the existing boxes in Line 6 every time. Therefore,
the average the worst time complexity for Algorithm 2 is O(N2).

• Approximation Ratio: Note that the worst condition for this improved version is the same
as original BFDH. Therefore, they shared the same approximation ratio. That is,

BFDHv2 ≤ 1.7OPT + hmax (2)

And the worst approximation ratio is 2.7.(Note that the approximation rate holds true only
when the items are not allowed to rotate.)

2.3 Genetic Algorithm
In previous section, we assume that all the items cannot be rotated. But in this section, we use genetic
algorithm to make the rotating decision and apply all the existing algorithms to these rotated items.

In general, genetic algorithm emulates evolution. The base idea is to generate high-quality chro-
mosomes based on the previous generation and operators such as mutation, crossover and selection.
And it generates chromosomes iteratively to get the approximate optimal solution.

2.3.1 Encoding

We use an array of bits to represent whether an item should be rotated. Formally, denote the items as
I = {item1, item2, · · · , itemn} and the bits array as Chromosome = {bit1, bit2, · · · , bitn}. We rotate

5

itemi if and only if it can be rotated and biti = 1. Therefore, we can define a rotated function, named
Rotate, to rotate items according to chromosome.

Rotate : I × Chromosome→ I

And we denote f as the traditional strip packing algorithms(like BFDHv2), which takes a set of items
as input and output the packing height. Then we can use the encoding to get the packing height of
Items as f(Rotate(Items,Chromosome)).

Therefore, we know that every encoding(chromosome) corresponds to a height. Since the encoding
space is quite large(in face 2N), it is impossible to brute all the possible encodings when N is large.
Therefore, genetic algorithm, a heuristics method, is designed to search the encoding space based on
several rules to find the approximate optimal height.

2.3.2 Initialization

The genetic algorithm should begin with several chromosomes(denote S as the size of initial number
of chromosomes). And these chromosomes should be initialized randomly.

2.3.3 Evaluate Fitness

In previous subsection, we know that every chromosome corresponds to a height. That is, the chro-
mosome with lower height is better. Then we can use these ”good” chromosomes to generate new
chromosomes, which is expected to be better. However, since the heights differ largely according to
the input, they are not suitable for quantification. Therefore, we normalize the height to a fixed
region. Denote the set of chromosomes as C = {c1, c2, · · · , cS}, and the corresponding height as
H = {h1, h2, · · · , hS}. Then, the fitness of ci is defined as

Fitness(ci) = c · maxH− hi
maxH−minH

. (3)

Therefore, the fitness values of all the chromosomes are in [0, c]. And the higher fitness implies the
better chromosome.

2.3.4 Secletion

Note that genetic algorithm follows the Darwinian evolution theory. That is, the higher fitness, the
more possible a chromosome can survive and produce offspring. Therefore, we define a selection
operator to select a chromosome from the population C. The selected probability is proportional to
its fitness. That is

Pr(ci is selected) = fitness(ci)∑S
j=0 fitness(cj)

(4)

2.3.5 Reproduce

In general, we want that the chromosome with outstanding performance to survive regardless of
selection. Therefore, we copy the top 1

16 of these generation into next generation.

2.3.6 Crossover

The crossover operator, which server as the most important operator in genetic algorithm, simulates
natural gene recombination. It happens with probability about 80%− 95%.It takes two chromosomes
as input, crossovers partial genes, and produce new chromosomes. Firstly, the crossover operator will
choose a crossover position randomly. Then it exchanges the genes before or after the chosen position
to generate new chromosomes.

For example, there are two chromosomes,c1 = 0101 1010,c2 = 1101 0001. And the crossover
operator chooses to exchange the genes after 4-th position. Then two chromosomes c3 = 0101 0001,c4 =
1101 1010 are generated.

6

2.3.7 Mutate

The mutate operator emulates the mutation of genes. It helps the genetic algorithm to expand the
searching space and avoid falling into local minimal. It choose several postions in the chromosome
and filp it. And the mutate operator is applied rarely(normally, the probability is less than 1%).

For example, c1 = 0101 1010 is chosen to be mutated. And the mutate operator chooses to filp
the 2-th and 8-th bits. Then the new chromosome generated by mutate operator is c′1 = 0001 1011

2.3.8 Summary of Genetic Algorithm

Algorithm 3 Genetic algorithm
1: function GA(strip− packing − algorithm)
2: initialize the set of chromosomes(denoted as Population) randomly
3: NewPopulation← empty
4: for k ← 1 to maxIter do
5: evaluate the fitness of chromosomes in Population based on strip-packing-algorithm
6: copy the top 1

16 of the chromosomes in Population to NewPopulation
7: while The size of NewPopulation is not enough do
8: c1, c2 ← Select() ▷ select two chromosomes based on select operater
9: if rand() < CrossoverProbability then

10: c3, c4 = Crossover(c1, c2) ▷ crossover based on certain probability
11: else
12: c3 = Mutate(c1), c4 = Mutate(c2) ▷ mutate based on certain probability
13: end if
14: add c3, c4 to NewPopulation
15: end while
16: Population← NewPopulation
17: NewPopulation← empty
18: end for
19: evaluate the fitness of chromosomes in Population based on strip-packing-algorithm
20: return The best height recorded during evaluating
21: end function

• Time Complexity: The time complexity of genetic algorithm corresponds to two factor: the
parameter of genetic algorithm(populatoin size S and iteration number maxIter) and the time
complexity of strip packing algorithm(denoted O(f(N))) it based on. Then the time complexity
of genetic algorithm is O(S ·maxIter · f(N)).

• Approximation Ratio: The approximation ratio of genetic algorithm also depends on the strip
packing algorithm it based on. In the worst case, the approximation ratio of genetic algorithm
is the same as that of the based algorithm. However, normally, genetic algorithm will give a
better approximation ratio than the algorithm it based.

2.4 Other known algorithms for strip packing
In this subsectoin, we introduce some known algorithms for strip packing which are also implemented
in our source code. These algorithms will be compared to our algorithm in the following chapters. We
will describe the basic idea of these algorithm, but not discuss implementation in detail(see our code
or the reference we list if you are interested).

2.4.1 Sleator’s Algorithm

Given a set of items and strip width W , the Sleator’s Algorithm works as follows:

7

1. Place the items whose width larger than W/2 in the bottom of the strip(the placing order does
not matter). Then the following steps will take place above these level.

2. Sort all the remaining items in nonincreasing order of height. The items will be placed in this
order.

3. Place the items until no item is left or the next one does not fit.

4. Draw a vertical line at W/2, which cuts the strip into two equal halves. The following steps will
place the remaining items in either the left half or the right half.

5. Let hl be the highest point covered by any item in the left half and hr the corresponding point
on the right half. Choose the half which is lower and place the items on this half until no other
item fits. Repeat this step until no item is left.

• Time Complexity: The sort procedure cost at most O(N logN). And the other steps cost at
most O(N). Therefore, the total time complexity of the algorithm is O(N logN).

• Approximation Ratio: Sleator[2] proved that the worst approximation ratio was 2.5 and this
is a tight bound.(Note that the approximation rate holds true only when the items are not
allowed to rotate.)

2.4.2 Reverse-fit Algorithm

Reverse-fit (short as RF) algorithm was first described by Schiermeyer[3] in 1994. Some additional
notation would be necessary. For any item i ∈ I, i’s lower left corner is denoted by (ai, ci) and upper
right corner by (bi, di).

Given a set of items I and a strip of width W , RF algorithm works as follows:

1. Stack all rectangles with width more than W/2 on top of each other (in random order) at the
bottom of the strip, with a total height as H0. And other items would be packed above H0.

2. Sort the remaining items in order of nonincreasing height. Denote the height of the tallest of
the remaining items as hmax.

3. Construct the first level: pack items from left to right with their bottom along the line of height
H0 until there is no more room. Now let h1 be the height of the tallest unpacked item.

4. Construct the second reverse level: pack items from right to left with their top touching
H0 + hmax + h1, until no items left or the total width of the items in the second reverse level is
at least W/2.
Notice: Pack the items into the two levels due to First-Fit, i.e., placing the items in the first
level where they fit and in the second one otherwise.

5. Shift down items in the second reverse level until an item touches some item in the first level.
Denote H1 as the new vertical position of the top of the second level. If no items are left, the
algorithm is over with total height of H1. Let f and s be the right most pair touching items,
where f is at the first level and s at the second reverse level. Define xr = min(bf , bs). Actually,
the ’touching-line’ of f and s is given by T (f, s) = {max(af , as),min(bf , bs)}.

6. If xr ≥W/2, define the third level (or the new ’first level’ in the next round) at H1. Skip step 7.

7. If xr < W/2, then s must be the last rectangle in the second reverse level. Shift (again) down all
items in the second reverse level except for s further, until an item touches another item at the
first level. Define h2 as the amount by which the second reverse level is shifted down. Denote
the top of all items in the second reverse level except for s as H2.

8

a) If h2 ≤ h(s), then shift s to the left until it touches another item (from the first level) or
the border of the strip. And the third level (or the new ’first level’ in the next round) is defined
at H2.

b) If h2 > h(s), then define the third level (or the new ’first level’ in the next round) at H2.
Then place s left-aligned to the third level, such that it touches an item from the first level or
the border of the strip to its left.

8. Now after an execution of step 3 to 7, we’ll say that a complete ’round’ or ’iteration’ is over. And
that the third level is already defined, we’ll let it be the new ’first level’ in the next round, and
we would execute step 3 to 7 all over again with the remaining items. Notice that each following
level (starting at level three) is defined by a horizontal line through the top of the largest item
on the previous level (e.g., the third level is defined by the top of the previous second reverse
level H2). And note that the first item placed in the next level might not touch the border of
the strip with their left side, but an item from the first level or the item s.

• Time Complexity: The running time can reach O(N2), since there are at most N levels.

• Approximation Ratio: Schiermeyer[3] proved that RF algorithm is a 2-optimal algorithm
and thus the worst approximation ratio was 2.(Note that the approximation rate holds true only
when the items are not allowed to rotate.)

Figure 5: An illustration[3] for RF algorithm

3 Testing Results
In this chapter, we’ll demonstrate our tests for both correctness and performance. Best-fit De-
creasing Height Improved Version (short as BFDHv2) and Genetic Algorithm - Best-fit Decreasing
Height Improved Version (short as GA-BFDHv2) would be focused on.

3.1 Correctness Test
Since no general baseline exists for large scale sets of input in 2D strip packing problem, we’ll simply
show that our program works correctly for some predictable inputs, while it’s also working fine in
some extreme cases without a known answer. Furthermore, since GA-BFDHv2 is based on BFDHv2
and is actually unpredictable, we’ll test for original BFDH and BFDHv2’s correctness in case 1 and
2. And GA-BFDHv2 would be tested later in case 4.

• Case 1 A common case where the original BFDH and the improved BFDHv2 work in the same
way

9

Figure 6: Case 1, total height = 13 for both BFDH and BFDHv2

Testing result is as follows:
. / p r o j e c t 5
#Input :

18 6
6 8
5 7
4 6
7 5
3 4
4 3

#Output :
BFDH: 13
BFDHv2: 13

• Case 2 A common case that differentiates the original BFDH and the improved BFDHv2

(a) BFDH, total height = 15 (b) BFDHv2, total height = 13

Figure 7: Case 2

Testing result is as follows:

10

. / p r o j e c t 5
#Input :

18 8
6 8
5 7
4 6
7 5
3 4
4 3
4 3
4 2

#Output :
BFDH: 15
BFDHv2: 13

• Case 3 Cannot pack (even after a rotation) due to a large rectangle, say 10 × 10 for a strip
with width = 8
Testing result is as follows:
. / p r o j e c t 5
#Input :

8 1
10 10

#Output :
Cannot Pack !

• Case 4 Large-scale random input
We use a test input generator test_gen to build such large-scale random input with:

number of textures = 1000

strip width = 3000

optimal height = 5000

, which could be obtained at file Input_case4.txt together with test input generator’s source
code.Testing result is as follows:
. / test_gen 1000 3000 5000 Input_case4 . txt
. / p r o j e c t 5
#Input :

3000 1000
135 458
214 227
62 63
174 65
489 141
908 1346
.

#Output :
GA−BFDHv2: 5049
BFDH: 6309
BFDHv2: 5160

11

For case 1, 2 and 3, our program works correctly as expected. And for case 4, a large-scale random
input, our program also gives reasonable output, and thus we’ll directly affirm its general correctness.

3.2 Performance Test
To test run time performance of BFDHv2 and GA-BFDHv2, we provide test.cpp (instead of main.cpp),
which works as follow:

g++ −O3 test . cpp str ip_pack ing . cpp −o test
. / test max_width mini_num maxi_num step GAflag

, whose usage is explained in the README.md file provided together. Either run time of BFDHv2
or GA-BFDHv2 would be measured and eventually written in file Runtime_performance.txt.

The run times vs. input sizes(number of textures) tables are shown below:

Number of textures 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Run time (ms) 0.80 3.27 7.10 12.00 19.33 28.00 39.00 51.00 63.00 77.33

Table 2: BFDHv2 Run time

Number of textures 100 200 300 400 500
Run time (s) 0.418 1.697 4.444 7.725 12.398

Number of textures 600 700 800 900 1000
Run time (s) 16.022 21.932 28.700 36.769 42.571

Table 3: GA-BFDHv2 Run time

And run times vs. input sizes(number of textures) plots are as follow:

(a) run times vs. input sizes for BFDHv2 (b) run times vs. input sizes for GA-BFDHv2

Figure 8: run times vs. input sizes

According to analysis earlier, the average and worst time complexity for BFDHv2 is O(N2), and the
actual run times fit to this bound perfectly. While GA-BFDHv2’s time complexity is O(S ·maxIter ·
f(N)) = O(N2), where f(N) stands for fucntion of BFDHv2 here, the actual performance conforms
to it as well.

12

4 Analysis and Comments
4.1 Approximation Comparison
In this section, we will test the approximation ratio under varied numbers of textures for the algorithms
mentioned above. In our tests, we fix the strip width(104) and the optimal height(104). The testing
result is shown in the Figure 9. We can see that our BFDHv2 performs best both among the traditional
algorithms(do not allow rotation) and the genetic algorithms version.

100 200 300 400 500 600 700 800 900 1000

N

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

ap
pr

ox
im

at
io

n
ra

tio

BFDH
BFDHv2
Sleator
RF

(a) traditional algorithms

100 200 300 400 500 600 700 800 900 1000

N

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

ap
pr

ox
im

at
io

n
ra

tio

GA-BFDH
GA-BFDHv2
GA-Sleator
GA-RF

(b) genetic algorithms

Figure 9: approximation ratio for different algorithms

Also, the genetic algorithm helps those traditional algorithm reach a better approximation ratio.
To illustrate the improvement introduced by genetic algorithm, we draw the Figure 10 to compare
the GA-BFDHv2 and BFDHv2. Evidently, Figure 10 implies that the genetic algorithm reduce the
approximation ratio dramatically.

100 200 300 400 500 600 700 800 900 1000

N

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

ap
pr

ox
im

at
io

n
ra

tio

GA-BFDHv2
BFDHv2

Figure 10: approximation ratio for different algorithms

4.2 Approximation Ratio and the Width of the Strip
In this section, we will focus on the BFDHv2 and GA-BFDHv2, and discuss the relation between
approximation ratio and the width of the strip.We use our test program to generator test cases with

13

varied maximal width, while fixing the number of textures(N = 100) and the optimal height(OPT =
10000). The test results are shown in the Figure 11.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

strip width 104

1

1.5

2

2.5

3

3.5

4

ap
pr

ox
im

at
io

n
ra

tio

BFDHv2
GA-BFDHv2

Figure 11: approximation ratio vs. strip width

As we can see, the approximation ratios for both BFDHv2 and GA-BFDHv2 increase when the
maximal width increases. But the increasing speed of GA-BFDHv2 is much smooth than the original
BFDHv2.

We speculate that the phenomenon happens due to the following reasons. Firstly, When the
optimal height is relatively low(i.e. the strip width is relative great), any absolute error made by
algorithms would cause the approximation rate to increase dramatically. Moreover, when the strip
width is relative large, the rotation decision becomes the dominant factor that affect approximation
rate. For example, when the optimal height is 104, and the strip width is 105, there is a texture whose
shape is (105−1)×1(height×width). If the algorithm do not rotate this item, the approximation rate
is at least 10! And since our genetic algorithm would rotate these textures properly, the GA-BFDHv2
performs much better than BFDHv2 when strip width is relative high.

4.3 Approximation Ratio and Distribution of Widths and Heights
In this subsection, we will discuss the relations between approximation ratio and distribution of widths
and heights.

4.3.1 Traditional Strip Packing Algorithms

We fix the strip width and optimal height so that they are equal. And we generate test cases so that
all items shared the same aspect ratio(min{ width

height ,
height
width }, since the problem allow rotation, we do

not distinguish between width-height ratio and height-width ratio). Then we use the traidtonal strip
packing algorithms described in Chapter 2 to solve these test cases. The result is shown in Table 4.

aspect ratio 1:1 1:2 1:3 1:4 1:5
BFDH 1.17 1.22 1.23 1.37 1.55

BFDHv2 1.00 1.03 1.05 1.15 1.12
Sleator 1.04 1.13 1.13 1.23 1.26

RF 1.31 1.29 1.32 1.35 1.36

Table 4: Approximation Ratio and Distribution of Widths and Height(traditional)

14

From Table 4, we can see that, in general, the approximation ratio of all the traditional algo-
rihtms, expect reverse-fit, increase when aspect ratio decrease. The possible interpretation for this
phenomenon is as follows.

When width and height are more and more unbalanced, the decision of the rotation is becoming
more and more significant. However, the traditional algorithms cannot deal with rotation well, which
causes the bad performance under low aspect ratio.

Also, note that our algorithm, BFDHv2, does best among all the listed algorithm, and under all
aspect ratio.

4.3.2 Genetic Algorithm

When we apply the genetic algorithm to the traditoinal algorithm, the results change dramatically.
Expect that the aspect ratio is 1(i.e. the rotation does not matter), the performance of all the
algorithms is improved. And the approximation ratio seems to be independent to the aspect ratio
when the aspect ratio is greater than 1.

aspect ratio 1:1 1:2 1:3 1:4 1:5
GA-BFDH 1.17 1.02 1.01 1.02 1.03

GA-BFDHv2 1.00 1.00 1.00 1.00 1.00
GA-Sleator 1.03 1.00 1.02 1.02 1.01

GA-RF 1.33 1.09 1.13 1.09 1.11

Table 5: Approximation Ratio and Distribution of Widths and Height(genetic algorithm)

4.4 Go Further into the Genetic Algorithm
4.4.1 The Comparison between Genetic Algorithm and Random Search

To verify that the genetic algorithm is an efficient algorithm instead of a random algorithm, we test
the genetic algorithm(based on BFDHv2) and random search(based on BFDHv2) in different textures
size. In this test, both the random search and the genetic algorithm search 5000 times.(since the test
for this section is really time-consuming, we just test 10 times for every entry in Table 6.)

number of items 500 1000 1500 2000 2500 3000
genetic algorithm 1.04 1.03 1.13 1.09 1.02 1.02

random search 1.08 1.05 1.2 1.15 1.05 1.05

Table 6: The Comparison between Genetic Algorithm and Random Search

From the Table 6, we can see that the genetic algorithm introduce about 50% decrease in terms
of the exceeding height above the optimal height.

4.4.2 The Convergence of Genetic Algorithm

To futher understand how genetic algorithm works, we draw the following figures(Figure 12) to illus-
trate how the best-height decreases during the iteration.

15

(a) test-case-1 (b) test-case-2

Figure 12: the convergence of genetic algorithm

From Figure 12, we can find that the most significant decreases happens during the top 50 itera-
tions. Therefore, there is no need to run genetic algorithm for too many iterations. Usually, 50-100
iterations is enough for this task.

5 Conclusion
With this work, we propose the improved version of Best Fit Decreasing Height and introduce genetic
algorithm to enhance the approximation. Also, the experiment we did shows that our algorithm
outdoes many existing strip packing algorithms. Moreover, the further improvement can be done by
considering other heuristic approaches. Besides, using heuristic algorithms to pack textures, instead
of just deciding rotation, may lead to better performance.

6 Declaration
We hereby declare that all the work done in this project titled ”Texture Packing” is of
our independent effort as a group.

References
[1] Coffman Jr., Edward G.; Garey, M. R.; Johnson, David S.; Tarjan, Robert Endre (1980). ”Per-

formance Bounds for Level-Oriented Two-Dimensional Packing Algorithms”. SIAM J. Comput. 9
(4): 808–826.

[2] Sleator, D. A 2.5 Times Optimal Algorithm for Packing in Two Dimensions. Information Processing
Letters , 1:37–40, 1980.

[3] Schiermeyer, Ingo. (1994). Reverse-Fit: A 2-Optimal Algorithm for Packing Rectangles.. LNCS.
855. 290-299. 10.1007/BFb0049416.

16

